Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.599
Filtrar
1.
J Clin Psychiatry ; 85(2)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38696220

RESUMEN

Objective: Major depressive disorder (MDD) is common, but current treatment options have significant limitations in terms of access and efficacy. This study examined the effectiveness of transcranial alternating current stimulation (tACS) for the acute treatment of MDD.Methods: We performed a triple-blind, fully remote, randomized controlled trial comparing tACS with sham treatment. Adults aged 21-65 years meeting DSM 5 criteria for MDD and having a score on the Beck Depression Inventory, Second Edition (BDI-II), between 20 and 63 were eligible to participate. Participants utilized tACS or sham treatment for two 20-minute treatment sessions daily for 4 weeks. The primary outcome was change in BDI-II score from baseline to the week 2 time point in an intent-to treat analysis, followed by analyses of treatment-adherent participants. Secondary analyses examined change at the week 1 and 4 time points, responder rates, subgroup analyses, other self-report mood measures, and safety. The study was conducted from April to October 2022.Results: A total of 255 participants were randomized to active or sham treatment. Improvement in intent-to-treat analysis was not statistically significant at week 2 (P= .056), but there were significant effects in participants with high adherence (P= .005). Significantly greater improvement at week 1 (P= .020) and greater response at week 4 (P= .028) occurred following tACS. Improvements were significantly larger for female participants. There were no significant effects on secondary mood measures. Side effects were minimal and mild.Conclusions: Rapid, clinically significant improvement in depression in adults with MDD was associated with tACS, particularly for women. Compared to other depression therapies, tACS has 3 key advantages: rapid, clinically significant treatment effect, the ability of patients to use the treatment on their own at home, and the rarity and low impact of adverse events.Trial Registration: ClinicalTrials.gov identifier: NCT05384041.


Asunto(s)
Trastorno Depresivo Mayor , Estimulación Transcraneal de Corriente Directa , Humanos , Trastorno Depresivo Mayor/terapia , Adulto , Femenino , Masculino , Persona de Mediana Edad , Estimulación Transcraneal de Corriente Directa/métodos , Resultado del Tratamiento , Anciano , Adulto Joven , Escalas de Valoración Psiquiátrica
2.
Harv Rev Psychiatry ; 32(3): 77-95, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38728568

RESUMEN

LEARNING OBJECTIVES: After participating in this CME activity, the psychiatrist should be better able to:• Compare and contrast therapies used in combination with transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) for treating MDD. BACKGROUND: Noninvasive neuromodulation, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), has emerged as a major area for treating major depressive disorder (MDD). This review has two primary aims: (1) to review the current literature on combining TMS and tDCS with other therapies, such as psychotherapy and psychopharmacological interventions, and (2) to discuss the efficacy, feasibility, limitations, and future directions of these combined treatments for MDD. METHOD: This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched three databases: PubMed, PsycInfo, and Cochrane Library. The last search date was December 5, 2023. RESULTS: The initial search revealed 2,519 records. After screening and full-text review, 58 studies (7 TMS plus psychotherapy, 32 TMS plus medication, 7 tDCS plus psychotherapy, 12 tDCS plus medication) were included. CONCLUSIONS: The current literature on tDCS and TMS paired with psychotherapy provides initial support for integrating mindfulness interventions with both TMS and tDCS. Adding TMS or tDCS to stable doses of ongoing medications can decrease MDD symptoms; however, benzodiazepines may interfere with TMS and tDCS response, and antipsychotics can interfere with TMS response. Pairing citalopram with TMS and sertraline with tDCS can lead to greater MDD symptom reduction compared to using these medications alone. Future studies need to enroll larger samples, include randomized controlled study designs, create more uniform protocols for combined treatment delivery, and explore mechanisms and predictors of change.


Asunto(s)
Trastorno Depresivo Mayor , Psicoterapia , Estimulación Transcraneal de Corriente Directa , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Trastorno Depresivo Mayor/terapia , Estimulación Transcraneal de Corriente Directa/métodos , Terapia Combinada , Psicoterapia/métodos , Antidepresivos/uso terapéutico
3.
Cereb Cortex ; 34(13): 8-18, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696602

RESUMEN

Noninvasive brain stimulation (NIBS) has been increasingly investigated during the last decade as a treatment option for persons with autism spectrum disorder (ASD). Yet, previous studies did not reach a consensus on a superior treatment protocol or stimulation target. Persons with ASD often suffer from social isolation and high rates of unemployment, arising from difficulties in social interaction. ASD involves multiple neural systems involved in perception, language, and cognition, and the underlying brain networks of these functional domains have been well documented. Aiming to provide an overview of NIBS effects when targeting these neural systems in late adolescent and adult ASD, we conducted a systematic search of the literature starting at 631 non-duplicate publications, leading to six studies corresponding with inclusion and exclusion criteria. We discuss these studies regarding their treatment rationale and the accordingly chosen methodological setup. The results of these studies vary, while methodological advances may allow to explain some of the variability. Based on these insights, we discuss strategies for future clinical trials to personalize the selection of brain stimulation targets taking into account intersubject variability of brain anatomy as well as function.


Asunto(s)
Encéfalo , Humanos , Adulto , Trastorno del Espectro Autista/terapia , Medicina de Precisión/métodos , Medicina de Precisión/tendencias , Estimulación Magnética Transcraneal/métodos , Trastorno Autístico/terapia , Trastorno Autístico/fisiopatología , Trastorno Autístico/psicología , Estimulación Transcraneal de Corriente Directa/métodos
4.
PLoS One ; 19(5): e0301851, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38696453

RESUMEN

This study tested the usability of a home-based self-administration transcranial direct current stimulation (tDCS) device designed specifically for women's health needs. This is a single center triple blinded clinical usability study for a new wireless, Bluetooth-controlled wearable tDCS device for women's health. The study aims to evaluate the usability and effective blinding of a home-based tDCS system. A total of forty-nine women of reproductive age were randomly allocated (1:1) to receive one session of active tDCS (n = 24) or sham tDCS (n = 25) over the motor and dorsolateral prefrontal cortex. Each participant self-administered one 20-minute session without supervision following guidance on a software application alone. The System Usability Scale (SUS) and the Patient Global Impression of Change (PGIC) were used to evaluate the usability of the system. Regardless of sham or active conditions, all users found the system easy to use without the support of researchers. Usability scores were considered to be "excellent" in both groups and no significant difference was found between sham and active groups showing effective blinding of the device (Active group: 93.7 (83.1-97.5); Sham group 90 (86.2-95) p = 0.79) and PGIC (Active group: 2 (1-2.75); Sham group 2 (1-2) p = 0.99) using an unpaired t-test or non-parametric statistical tests accordingly. The new Bluetooth-controlled wearable tDCS device is easy, safe to use and completely controlled by a smartphone app. This device is focused on women's health and will be tested as an alternative treatment for chronic pelvic pain and mood disturbance associated with menstrual cycles in further research.


Asunto(s)
Dismenorrea , Estimulación Transcraneal de Corriente Directa , Humanos , Femenino , Adulto , Estimulación Transcraneal de Corriente Directa/métodos , Estimulación Transcraneal de Corriente Directa/instrumentación , Dismenorrea/terapia , Adulto Joven , Autoadministración/instrumentación , Dispositivos Electrónicos Vestibles , Corteza Prefrontal/fisiología
5.
PeerJ ; 12: e17288, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699193

RESUMEN

Background: The aim of this study is to investigate the acute effects of anodal transcranial direct current stimulation (tDCS) on reaction time, response inhibition and attention in fencers. Methods: Sixteen professional female fencers were recruited, and subjected to anodal tDCS and sham stimulation in the primary motor area (M1) one week apart in a randomized, crossover, single-blind design. A two-factor analysis of variance with repeated measures was used to analyze the effects of stimulation conditions (anodal stimulation, sham stimulation) and time (pre-stimulation, post-stimulation) on reaction time, response inhibition, and attention in fencers. Results: The study found a significant improvement in response inhibition and attention allocation from pre-stimulation to post-stimulation following anodal tDCS but not after sham stimulation. There was no statistically significant improvement in reaction time and selective attention. Conclusions: A single session of anodal tDCS could improve response inhibition, attention allocation in female fencers. This shows that tDCS has potential to improve aspects of an athlete's cognitive performance, although we do not know if such improvements would transfer to improved performance in competition. However, more studies involving all genders, large samples, and different sports groups are needed in the future to further validate the effect of tDCS in improving the cognitive performance of athletes.


Asunto(s)
Atención , Estudios Cruzados , Tiempo de Reacción , Estimulación Transcraneal de Corriente Directa , Humanos , Femenino , Estimulación Transcraneal de Corriente Directa/métodos , Atención/fisiología , Método Simple Ciego , Tiempo de Reacción/fisiología , Adulto Joven , Adulto , Corteza Motora/fisiología , Inhibición Psicológica
6.
Sci Rep ; 14(1): 10087, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698192

RESUMEN

Detrimental decision-making is a major problem among violent offenders. Non-invasive brain stimulation offers a promising method to directly influence decision-making and has already been shown to modulate risk-taking in non-violent controls. We hypothesize that anodal transcranial direct current stimulation (tDCS) over the right dorsolateral prefrontal cortex beneficially modulates the neural and behavioral correlates of risk-taking in a sample of violent offenders. We expect offenders to show more risky decision-making than non-violent controls and that prefrontal tDCS will induce stronger changes in the offender group. In the current study, 22 male violent offenders and 24 male non-violent controls took part in a randomized double-blind sham-controlled cross-over study applying tDCS over the right dorsolateral prefrontal cortex. Subsequently, participants performed the Balloon Analogue Risk Task (BART) during functional magnetic resonance imaging (fMRI). Violent offenders showed significantly less optimal decision-making compared to non-violent controls. Active tDCS increased prefrontal activity and improved decision-making only in violent offenders but not in the control group. Also, in offenders only, prefrontal tDCS influenced functional connectivity between the stimulated area and other brain regions such as the thalamus. These results suggest baseline dependent effects of tDCS and pave the way for treatment options of disadvantageous decision-making behavior in this population.


Asunto(s)
Criminales , Toma de Decisiones , Imagen por Resonancia Magnética , Corteza Prefrontal , Asunción de Riesgos , Estimulación Transcraneal de Corriente Directa , Violencia , Humanos , Masculino , Estimulación Transcraneal de Corriente Directa/métodos , Adulto , Criminales/psicología , Toma de Decisiones/fisiología , Violencia/psicología , Corteza Prefrontal/fisiología , Corteza Prefrontal/diagnóstico por imagen , Método Doble Ciego , Adulto Joven , Estudios Cruzados , Corteza Prefontal Dorsolateral/fisiología
7.
Scand J Pain ; 24(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557595

RESUMEN

OBJECTIVES: Despite the fact that fibromyalgia, a widespread disease of the musculoskeletal system, has no specific treatment, patients have shown improvement after pharmacological intervention. Pregabalin has demonstrated efficacy; however, its adverse effects may reduce treatment adherence. In this context, neuromodulatory techniques such as transcranial direct current stimulation (tDCS) may be employed as a complementary pain-relieving method. Consequently, the purpose of this study was to evaluate the effect of pregabalin and tDCS treatments on the behavioral and biomarker parameters of rats submitted to a fibromyalgia-like model. METHODS: Forty adult male Wistar rats were divided into two groups: control and reserpine. Five days after the end of the administration of reserpine (1 mg/kg/3 days) to induce a fibromyalgia-like model, rats were randomly assigned to receive either vehicle or pregabalin (30 mg/kg) along with sham or active- tDCS treatments. The evaluated behavioral parameters included mechanical allodynia by von Frey test and anxiety-like behaviors by elevated plus-maze test (time spent in opened and closed arms, number of entries in opened and closed arms, protected head-dipping, unprotected head-dipping [NPHD], grooming, rearing, fecal boluses). The biomarker analysis (brain-derived neurotrophic factor [BDNF] and tumor necrosis factor-α [TNF-α]) was performed in brainstem and cerebral cortex and in serum. RESULTS: tDCS reversed the reduction in the mechanical nociceptive threshold and the decrease in the serum BDNF levels induced by the model of fibromyalgia; however, there was no effect of pregabalin in the mechanical threshold. There were no effects of pregabalin or tDCS found in TNF-α levels. The pain model induced an increase in grooming time and a decrease in NPHD and rearing; while tDCS reversed the increase in grooming, pregabalin reversed the decrease in NPHD. CONCLUSIONS: tDCS was more effective than pregabalin in controlling nociception and anxiety-like behavior in a rat model-like fibromyalgia. Considering the translational aspect, our findings suggest that tDCS could be a potential non-pharmacological treatment for fibromyalgia.


Asunto(s)
Fibromialgia , Estimulación Transcraneal de Corriente Directa , Humanos , Adulto , Ratas , Masculino , Animales , Estimulación Transcraneal de Corriente Directa/métodos , Fibromialgia/tratamiento farmacológico , Pregabalina/farmacología , Factor Neurotrófico Derivado del Encéfalo , Ratas Wistar , Factor de Necrosis Tumoral alfa , Nocicepción/fisiología , Reserpina , Dolor , Ansiedad/tratamiento farmacológico , Biomarcadores
8.
BMC Neurol ; 24(1): 132, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641827

RESUMEN

BACKGROUND: Post-stroke cognitive impairment (PSCI) is the focus and difficulty of poststroke rehabilitation intervention with an incidence of up to 61%, which may be related to the deterioration of cerebrovascular function. Computer-aided cognitive training (CACT) can improve cognitive function through scientific training targeting activated brain regions, becoming a popular training method in recent years. Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique, can regulate the cerebral vascular nerve function, and has an effect on the rehabilitation of cognitive dysfunction after stroke. This study examined the effectiveness of both CACT and tDCS on cognitive and cerebrovascular function after stroke, and explored whether CACT combined with tDCS was more effective. METHODS: A total of 72 patients with PSCI were randomly divided into the conventional cognitive training (CCT) group (n = 18), tDCS group (n = 18), CACT group (n = 18), and CACT combined with tDCS group (n = 18). Patients in each group received corresponding 20-minute treatment 15 times a week for 3 consecutive weeks. Montreal Cognitive Assessment (MoCA) and the Instrumental Activities of Daily Living Scale (IADL) were used to assess patients' cognitive function and the activities of daily living ability. Transcranial Doppler ultrasound (TCD) was used to assess cerebrovascular function, including cerebral blood flow velocity (CBFV), pulse index (PI), and breath holding index (BHI). These outcome measures were measured before and after treatment. RESULTS: Compared with those at baseline, both the MoCA and IADL scores significantly increased after treatment (P < 0.01) in each group. There was no significantly difference in efficacy among CCT, CACT and tDCS groups. The CACT combined with tDCS group showed greater improvement in MoCA scores compared with the other three groups (P < 0.05), especially in the terms of visuospatial and executive. BHI significantly improved only in CACT combined with tDCS group after treatment (p ≤ 0.05) but not in the other groups. Besides, no significant difference in CBFV or PI was found before and after the treatments in all groups. CONCLUSION: Both CACT and tDCS could be used as an alternative to CCT therapy to improve cognitive function and activities of daily living ability after stroke. CACT combined with tDCS may be more effective improving cognitive function and activities of daily living ability in PSCI patients, especially visuospatial and executive abilities, which may be related to improved cerebral vasomotor function reflected by the BHI. TRIAL REGISTRATION NUMBER: The study was registered in the Chinese Registry of Clinical Trials (ChiCTR2100054063). Registration date: 12/08/2021.


Asunto(s)
Disfunción Cognitiva , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Actividades Cotidianas , Rehabilitación de Accidente Cerebrovascular/métodos , Recuperación de la Función , Entrenamiento Cognitivo , Accidente Cerebrovascular/complicaciones , Disfunción Cognitiva/etiología , Disfunción Cognitiva/terapia , Computadores
9.
Neural Plast ; 2024: 6344925, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38645612

RESUMEN

Background: The use of transcranial direct current stimulation (tDCS) to modulate pain, psychological aspects, and cognitive functions has increased in recent years. The present scoping review aims to investigate the use of tDCS in cancer patients and its significant impact on psychocognitive and pain related symptoms. Methods: From the earliest available date to June 2023, a comprehensive search was conducted in three electronic scientific databases-PubMed, Scopus, and Embase-and other supplementary sources. Ten relevant studies were identified and included, comprising single case studies, randomized controlled trials, pilot studies, and one retrospective study. PRISMA guidelines for scoping reviews were followed. Results: These studies investigated the use of tDCS to improve pain and psychocognitive aspects in patients with various types of cancer, including breast, oral, bladder, lung, pancreatic, head and neck cancer, hepatocellular carcinoma, and meningioma. Overall, the results suggest that tDCS has shown efficacy in relieving pain, reducing anxiety and depression, and improving cognitive function in cancer patients. Conclusion: Due to the limited number and high heterogeneity of the existing literature in this field, more investigation and the establishment of standardized protocols would be required to obtain more conclusive evidence.


Asunto(s)
Neoplasias , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Neoplasias/terapia , Neoplasias/psicología , Neoplasias/complicaciones , Manejo del Dolor/métodos , Depresión/terapia , Cognición/fisiología , Dolor/psicología , Ansiedad/terapia
10.
Sci Rep ; 14(1): 8035, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580671

RESUMEN

Alpha oscillations have been implicated in time perception, yet a consensus on their precise role remains elusive. This study directly investigates this relationship by examining the impact of alpha oscillations on time perception. Resting-state EEG recordings were used to extract peak alpha frequency (PAF) and peak alpha power (PAP) characteristics. Participants then performed a time generalization task under transcranial alternating current stimulation (tACS) at frequencies of PAF-2, PAF, and PAF+2, as well as a sham condition. Results revealed a significant correlation between PAP and accuracy, and between PAF and precision of one-second time perception in the sham condition. This suggests that alpha oscillations may influence one-second time perception by modulating their frequency and power. Interestingly, these correlations weakened with real tACS stimulations, particularly at higher frequencies. A second analysis aimed to establish a causal relationship between alpha peak modulation by tACS and time perception using repeated measures ANOVAs, but no significant effect was observed. Results were interpreted according to the state-dependent networks and internal clock model.


Asunto(s)
Percepción del Tiempo , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Electroencefalografía
11.
Sci Rep ; 14(1): 8064, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580697

RESUMEN

The causal role of the cerebral hemispheres in positive and negative emotion processing remains uncertain. The Right Hemisphere Hypothesis proposes right hemispheric superiority for all emotions, while the Valence Hypothesis suggests the left/right hemisphere's primary involvement in positive/negative emotions, respectively. To address this, emotional video clips were presented during dorsolateral prefrontal cortex (DLPFC) electrical stimulation, incorporating a comparison of tDCS and high frequency tRNS stimulation techniques and manipulating perspective-taking (first-person vs third-person Point of View, POV). Four stimulation conditions were applied while participants were asked to rate emotional video valence: anodal/cathodal tDCS to the left/right DLPFC, reverse configuration (anodal/cathodal on the right/left DLPFC), bilateral hf-tRNS, and sham (control condition). Results revealed significant interactions between stimulation setup, emotional valence, and POV, implicating the DLPFC in emotions and perspective-taking. The right hemisphere played a crucial role in both positive and negative valence, supporting the Right Hemisphere Hypothesis. However, the complex interactions between the brain hemispheres and valence also supported the Valence Hypothesis. Both stimulation techniques (tDCS and tRNS) significantly modulated results. These findings support both hypotheses regarding hemispheric involvement in emotions, underscore the utility of video stimuli, and emphasize the importance of perspective-taking in this field, which is often overlooked.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Corteza Prefrontal/fisiología , Emociones/fisiología , Corteza Prefontal Dorsolateral , Incertidumbre
12.
Artículo en Inglés | MEDLINE | ID: mdl-38625770

RESUMEN

This study embarks on a comprehensive investigation of the effectiveness of repetitive transcranial direct current stimulation (tDCS)-based neuromodulation in augmenting steady-state visual evoked potential (SSVEP) brain-computer interfaces (BCIs), alongside exploring pertinent electroencephalography (EEG) biomarkers for assessing brain states and evaluating tDCS efficacy. EEG data were garnered across three distinct task modes (eyes open, eyes closed, and SSVEP stimulation) and two neuromodulation patterns (sham-tDCS and anodal-tDCS). Brain arousal and brain functional connectivity were measured by extracting features of fractal EEG and information flow gain, respectively. Anodal-tDCS led to diminished offsets and enhanced information flow gains, indicating improvements in both brain arousal and brain information transmission capacity. Additionally, anodal-tDCS markedly enhanced SSVEP-BCIs performance as evidenced by increased amplitudes and accuracies, whereas sham-tDCS exhibited lesser efficacy. This study proffers invaluable insights into the application of neuromodulation methods for bolstering BCI performance, and concurrently authenticates two potent electrophysiological markers for multifaceted characterization of brain states.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Potenciales Evocados Visuales , Fractales , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Potenciales Evocados Visuales/fisiología , Masculino , Adulto , Femenino , Adulto Joven , Nivel de Alerta/fisiología , Encéfalo/fisiología , Voluntarios Sanos , Algoritmos
13.
Sci Rep ; 14(1): 7865, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570619

RESUMEN

Maintaining vigilance is essential for many everyday tasks, but over time, our ability to sustain it inevitably decreases, potentially entailing severe consequences. High-definition transcranial direct current stimulation (HD-tDCS) has proven to be useful for studying and improving vigilance. This study explores if/how cognitive load affects the mitigatory effects of HD-tDCS on the vigilance decrement. Participants (N = 120) completed a modified ANTI-Vea task (single or dual load) while receiving either sham or anodal HD-tDCS over the right posterior parietal cortex (rPPC). This data was compared with data from prior studies (N = 120), where participants completed the standard ANTI-Vea task (triple load task), combined with the same HD-tDCS protocol. Against our hypotheses, both the single and dual load conditions showed a significant executive vigilance (EV) decrement, which was not affected by the application of rPPC HD-tDCS. On the contrary, the most cognitively demanding task (triple task) showed the greatest EV decrement; importantly, it was also with the triple task that a significant mitigatory effect of the HD-tDCS intervention was observed. The present study contributes to a more nuanced understanding of the specific effects of HD-tDCS on the vigilance decrement considering cognitive demands. This can ultimately contribute to reconciling heterogeneous effects observed in past research and fine-tuning its future clinical application.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Tiempo de Reacción/fisiología , Vigilia , Lóbulo Parietal/fisiología , Cognición/fisiología
14.
Sensors (Basel) ; 24(8)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38676129

RESUMEN

This study presents phosphenotron, a device for enhancing the sensory spatial resolution of phosphenes in the visual field (VF). The phosphenotron employs a non-invasive transcranial alternating current stimulation (NITACS) to modulate brain activity by applying weak electrical currents to the scalp or face. NITACS's unique application induces phosphenes, a phenomenon where light is perceived without external stimuli. Unlike previous invasive methods, NITACS offers a non-invasive approach to create these effects. The study focused on assessing the spatial resolution of NITACS-induced phosphenes, crucial for advancements in visual aid technology and neuroscience. Eight participants were subjected to NITACS using a novel electrode arrangement around the eye orbits. Results showed that NITACS could generate spatially defined phosphene patterns in the VF, varying among individuals but consistently appearing within their VF and remaining stable through multiple stimulations. The study established optimal parameters for vibrant phosphene induction without discomfort and identified electrode positions that altered phosphene locations within different VF regions. Receiver Operating characteristics analysis indicated a specificity of 70.7%, sensitivity of 73.9%, and a control trial accuracy of 98.4%. These findings suggest that NITACS is a promising, reliable method for non-invasive visual perception modulation through phosphene generation.


Asunto(s)
Fosfenos , Estimulación Transcraneal de Corriente Directa , Campos Visuales , Humanos , Fosfenos/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Estimulación Transcraneal de Corriente Directa/instrumentación , Masculino , Campos Visuales/fisiología , Femenino , Adulto , Percepción Visual/fisiología , Adulto Joven , Electrodos
15.
Neurol Res ; 46(5): 453-465, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38634361

RESUMEN

OBJECTIVE: To analyze the effects of transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) on the cognitive function of individuals with Alzheimer's disease (AD). METHODS: This systematic review with meta-analysis and meta-regression included randomized clinical trials published until 05/2022. We included studies conducted with individuals with AD of both sexes, aged between 55 and 85 years, treated with tDCS, TMS, or both. RESULTS: Twenty-one studies were included in the systematic review and sixteen in the meta-analysis. Meta-regression suggested a significant influence of anodic tDCS with current intensity of 1.5 mA on cognitive function. Significant results were found with treatment frequencies of three and five days a week for two weeks. Subgroup analysis found that anodic tDCS influences cognitive function, regardless of AD stage. Similar was observed for TMS using a frequency of 20 Hz and current intensity of 90% of the resting motor threshold. DISCUSSION: Anodal tDCS and 20 Hz TMS have demonstrated the ability to improve cognitive function in AD by modulating neural activity. These therapies are safe and well-tolerated, offering promise as adjuncts to available pharmacological treatments. Studies with greater methodological rigor and parameter standardization are warranted. Comprehensive investigations involving neuroimaging techniques may provide a better understanding of the interaction between induced electrical fields and the complex neural networks affected in AD, paving the way for more personalized and effective neurostimulation approaches.


Asunto(s)
Enfermedad de Alzheimer , Cognición , Estimulación Transcraneal de Corriente Directa , Estimulación Magnética Transcraneal , Humanos , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/psicología , Estimulación Magnética Transcraneal/métodos , Estimulación Transcraneal de Corriente Directa/métodos , Cognición/fisiología , Anciano , Anciano de 80 o más Años , Persona de Mediana Edad , Femenino
16.
JMIR Res Protoc ; 13: e52922, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687586

RESUMEN

BACKGROUND: Children diagnosed with cerebral palsy (CP) often experience various limitations, particularly in gross motor function and activities of daily living. Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that has been used to improve movement, gross motor function, and activities of daily living. OBJECTIVE: This study aims to evaluate the potential additional effects of physiotherapy combined with tDCS in children with CP in comparison with physiotherapy only. METHODS: This is a 2-arm randomized controlled trial that will compare the effects of tDCS as an adjunctive treatment during rehabilitation sessions to rehabilitation without tDCS. Children with CP classified by the Gross Motor Function Classification System as levels I and II will be randomly assigned to either the sham + rehabilitation group or the tDCS + rehabilitation group. The primary outcome will be the motor skills assessed using the Gross Motor Function Measure domain E scores, and the secondary outcome will be the measurement scores of the children's quality of life. The intervention will consist of a 10-day stimulation protocol with tDCS spread over 2 weeks, with stimulation or sham tDCS administered for 20 minutes at a frequency of 1 Hz, in combination with physiotherapy. Physical therapy exercises will be conducted in a circuit based on each child's baseline Gross Motor Function Measure results. The participants' changes will be evaluated and compared in both groups. Intervenient features will be tested. RESULTS: Data collection is ongoing and is expected to be completed by January 2025. A homogeneous sample and clear outcomes may be a highlight of this protocol, which may allow us to understand the potential use of tDCS and for whom it should or should not be used. CONCLUSIONS: A study with good evidence and clear outcomes in children with CP might open an avenue for the potential best use of neurostimulation. TRIAL REGISTRATION: Brazilian Registry of Clinical Trials RBR-104h4s4y; https://tinyurl.com/47r3x2e4. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/52922.


Asunto(s)
Parálisis Cerebral , Modalidades de Fisioterapia , Estimulación Transcraneal de Corriente Directa , Humanos , Parálisis Cerebral/rehabilitación , Parálisis Cerebral/terapia , Parálisis Cerebral/fisiopatología , Estimulación Transcraneal de Corriente Directa/métodos , Niño , Femenino , Masculino , Preescolar , Resultado del Tratamiento , Destreza Motora/fisiología , Ensayos Clínicos Controlados Aleatorios como Asunto , Calidad de Vida
18.
PLoS One ; 19(4): e0300243, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38662740

RESUMEN

Gait impairments negatively affect the quality of life of people with Parkinson's disease (PwPD). Aerobic exercise (AE) is an alternative to alleviate these impairments and its combination with transcranial direct current stimulation (tDCS) has demonstrated synergistic effects. However, the effect of multitarget tDCS application (i.e., motor, and prefrontal cortices simultaneously) combined with physical exercise on gait impairments is still little known. Thus, the proposed randomized clinical trial will verify the acute effects of AE combined with tDCS applied on motor and prefrontal cortices separately and simultaneously on gait (spatial-temporal and cortical activity parameters) in PwPD. Twenty-four PwPD in Hoehn & Yahr stages I-III will be recruited for this crossover study. PwPD will practice AE on treadmill simultaneously with the application of anodal tDCS during four intervention sessions on different days (∼ one week of interval). Active tDCS will be applied to the primary motor cortex, prefrontal cortex, and both areas simultaneously (multitarget), with an intensity of 2 mA for 20 min. For sham, the stimulation will remain at 2 mA for 10 s. The AE will last a total of 30 min, consisting of warm-up, main part (20 min with application of tDCS), and recovery. Exercise intensity will be controlled by heart rate. Spatial-temporal and cortical activity parameters will be acquired before and after each session during overground walking, walking with obstacle avoidance, and walking with a cognitive dual task at self-preferred velocity. An accelerometer will be positioned on the fifth lumbar vertebra to obtain the spatial-temporal parameters (i.e., step length, duration, velocity, and swing phase duration). Prefrontal cortex activity will be recorded from a portable functional near-infrared spectroscopy system and oxygenated and deoxygenated hemoglobin concentrations will be analyzed. Two-way ANOVAs with repeated measures for stimulation and moment will be performed. The findings of the study may contribute to improving gait in PwPD. Trial registration: Brazilian Clinical Trials Registry (RBR-738zkp7).


Asunto(s)
Ejercicio Físico , Marcha , Enfermedad de Parkinson , Estimulación Transcraneal de Corriente Directa , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Cruzados , Ejercicio Físico/fisiología , Prueba de Esfuerzo , Terapia por Ejercicio/métodos , Marcha/fisiología , Corteza Motora/fisiopatología , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Corteza Prefrontal/fisiopatología , Corteza Prefrontal/fisiología , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto , Estimulación Transcraneal de Corriente Directa/métodos
19.
PeerJ ; 12: e17144, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38584936

RESUMEN

Background: Transcranial alternating current stimulation (tACS) is a brain stimulation method for modulating ongoing endogenous oscillatory activity at specified frequency during sensory and cognitive processes. Given the overlap between event-related potentials (ERPs) and event-related oscillations (EROs), ERPs can be studied as putative biomarkers of the effects of tACS in the brain during cognitive/sensory task performance. Objective: This preliminary study aimed to test the feasibility of individually tailored tACS based on individual P3 (latency and frequency) elicited during a cued premature response task. Thus, tACS frequency was individually tailored to match target-P3 ERO for each participant. Likewise, the target onset in the task was adjusted to match the tACS phase and target-P3 latency. Methods: Twelve healthy volunteers underwent tACS in two separate sessions while performing a premature response task. Target-P3 latency and ERO were calculated in a baseline block during the first session to allow a posterior synchronization between the tACS and the endogenous oscillatory activity. The cue and target-P3 amplitudes, delta/theta ERO, and power spectral density (PSD) were evaluated pre and post-tACS blocks. Results: Target-P3 amplitude significantly increased after activetACS, when compared to sham. Evoked-delta during cue-P3 was decreased after tACS. No effects were found for delta ERO during target-P3 nor for the PSD and behavioral outcomes. Conclusion: The present findings highlight the possible effect of phase synchronization between individualized tACS parameters and endogenous oscillatory activity, which may result in an enhancement of the underlying process (i.e., an increase of target-P3). However, an unsuccessful synchronization between tACS and EEG activity might also result in a decrease in the evoked-delta activity during cue-P3. Further studies are needed to optimize the parameters of endogenous activity and tACS synchronization. The implications of the current results for future studies, including clinical studies, are further discussed since transcranial alternating current stimulation can be individually tailored based on endogenous event-related P3 to modulate responses.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Electroencefalografía , Estudios de Factibilidad , Encéfalo/fisiología , Potenciales Evocados/fisiología
20.
BMJ Open ; 14(4): e082764, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38604630

RESUMEN

INTRODUCTION: Poststroke cognitive impairment is a common complication in stroke survivors, seriously affecting their quality of life. Therefore, it is crucial to improve cognitive function of patients who had a stroke. Transcranial direct current stimulation (tDCS) and transcutaneous auricular vagus nerve stimulation (taVNS) are non-invasive, safe treatments with great potential to improve cognitive function in poststroke patients. However, further improvements are needed in the effectiveness of a single non-invasive brain stimulation technique for cognitive rehabilitation. This study protocol aims to investigate the effect and neural mechanism of the combination of tDCS and taVNS on cognitive function in patients who had a stroke. METHODS AND ANALYSIS: In this single-centre, prospective, parallel, randomised controlled trial, a total of 66 patients with poststroke cognitive impairment will be recruited and randomly assigned (1:1:1) to the tDCS group, the taVNS group and the combination of tDCS and taVNS group. Each group will receive 30 min of treatment daily, five times weekly for 3 weeks. Primary clinical outcome is the Montreal Cognitive Assessment. Secondary clinical outcomes include the Mini-Mental State Examination, Stroop Colour Word Test, Trail Marking Test, Symbol Digit Modalities Test and Modified Barthel Index. All clinical outcomes, functional MRI and diffusion tensor imaging will be measured at preintervention and postintervention. ETHICS AND DISSEMINATION: The trial has been approved by the Ethics Committee of the First Affiliated Hospital of Yangtze University (approval no: KY202390). The results will be submitted for publication in peer-reviewed journals or at scientific conferences. TRIAL REGISTRATION NUMBER: ChiCTR2300076632.


Asunto(s)
Disfunción Cognitiva , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Estimulación Transcraneal de Corriente Directa , Estimulación del Nervio Vago , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Imagen de Difusión Tensora , Estudios Prospectivos , Estimulación del Nervio Vago/métodos , Calidad de Vida , Disfunción Cognitiva/etiología , Disfunción Cognitiva/terapia , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia , Ensayos Clínicos Controlados Aleatorios como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA